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The Generation of Three-Dimensional Body-Fitted

Coordinate Systems For Viscous Flow Problems

By

Z. U. A. Warsi , C. W. Mastin and J. F. Thompson

Abstract

- The proposed set of equations (refer to the enclosed papers for

detail) which generate a series of surfaces between a given inner and

outer body, have been programed on CRAY-i. An extensive program test-

ing has been carried out to make the program usable for general body

shapes. For example, two methods have been developed to establish the

correspondence between the points of the inner and outer surfaces, a

method has been developed to find the first partial derivative of

x, y, z with respect to the coordinate along the surface. All these

methods are based on sound mathematical basis and have not been chosen

arbitrarily. Work has been started on complicated multibody config-

urations, such as the wing-body combination. Here the interfacing of

coordinates having sufficient derivative smoothness is the most impor-

tant problem.

In the period of this report, a thorough analysis on all sorts of

mathematical models for coordinate generation has been completed. This

analysis uncovers those differential relations which must invariably

be satisfied by the metric coefficients no matter which method is used
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to generate the coordinates. The final computational code to be

developed in the current year of effort is expected to reflect all

these achievements for practical utilization. '-

Previously reported examples of surface grid construction have

dealt with simple quadratic surfaces. To test the versitility of the

method, our program has been modified to accept the surface data

generated by Craidon [i] Aside from the more complex computational

region, which gave rise to additional coordinate singularities, the

grid generation procedure was unchanged. That is, the grid was

generated using cubic splines with an elliptic system used for smoothing.

Several coordinate surfaces for the region about a spline generated

wing-fuselage configuration have been plotted. A plot of that con-

figuration is given in Figure l(a). Figure l(b) illustrates the

continuation of coordinate lines from the body to the outer boundary.

Views of coordinate surfaces from the upstream direction are also included.

Figure l(c) is a surface surrounding the aircraft, and Figure l(d) is

a surface intersecting the trailing edge of the wing.
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BASIC DIFFERENTIAL MODELS FOR COORDINATE GENERATION

Z. U. A. WARSI*

Department of Aerospace Engineering, Mississippi State University, Drawer A,
Mississippi State, Mississippi 39762, USA

CONTENTS
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§2. Notation and Basic Formulas

§3. Generating Differential Equations Based on Gauss Equations

§4. Generating Differential Equations Based on Laplace Equations
§5. Generating Differential Equations Based on the Riemann Tensor

§1. INTRODUCTION

This paper examines in detail the analytical aspects of three distinct

methods of coordinate generation based on partial differential equations,

in either two or three dimensions. The first method is based on the Gauss

equations of a surface under the constraint of the Beltrami's second order

equations. These equations have been structured in such a way that an

automatic connection is established between the succeeding generated surfaces.

The second method is a re-examination of those equations which are based

on the inhomogeneous Laplace equations. This analysis reveals a new form

for the terms which play a role in the concentration of coordinate lines

and in the adaptive coordinate system generation. The third method pertains

to a set of equations in the metric coefficients which is obtained by setting
the Riemann's curvature tensor to zero.

The problem of generating spatial coordinates by numerical methods is a

problem of much interest in practically all branches of engineering and

physics. At present a number of techniques are under active development for
the generation of two and three-dimensional coordinates in the regions

between two or a number of arbitrary shaped bodies. Among these efforts

two easily discernable groups can be formed, (i) the methods based on

elliptic PDE's, and (ii) algebraic methods. In the first group, a set of

inhomogeneous Laplace equations is taken as the basic generating system.

These equations are then inverted and solved for the Cartesian coordinates.

*Professor
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I

. Some very useful results based on this line of approach started with the
1W o2

work of Winslow have been obtained by Thompson, et al. (TTM method),
3 4 5 6

Steger, et al. 3 , Yu , Graves , and Thomas . For an extensive bibliography7
refer to Thompson, et al. In the second group of methods, the grid points

in space are generated by interpolating and blending functions starting

from the given boundary data. This line of approach has been followed by
8 9 10

Eiseman , Smith, et al. , Erickson 0 and others.

In this paper we consider only the analytical aspects of the differential

equation's approach to coordinate generation. The main effort here is

to present only those results which are of permanent interest to the workers

in the field of coordinate generation. The proposed equations in any one

* of the groups have not been arbitrarily selected to generate some sort of

coordinates. These equations are in fact those which every numerically

or analytically generated coordinates must satisfy. The reader will

find that some large portions of sections 3 and 5 have new results andWa 1i1, 1 2

are based on the work by Warsi In sections 3 and 5 a number of

exact solutions have been obtained which can be used to provide a testing

ground for different numerical schemes.

§2. NOTATION AND BASIC FORMULAS

In this paper any general curvilinear coordinate system will be denoted
iby a superscript index notation, such as x . However, when an expression

has been expanded out in full and there is no need for an index notation then

we shall use the symbols

1 2 3x = ,x = r ,x = .

The rectangular Cartesian coordinates (x, y, z) which determine the position

vector r, i.e.,

r = r(x,y,z)

will be denoted by the subscripted variable x., where x= x, x2 =y,

X3 - Z.

Two similar indices, one appearing as a subscript and the other as a

superscript will always imply summation over the range of index values; e.g.,
i 1 2 3

AJB -A B +A 2jB +A 3jB2 3
In an Euclidean space (E or E3), the covariant base vectors ai are given

by

[ " . .. . .... .. .: .. ... .... ... . . ...... ... .. .. ........ .......... ..... .. .. ... ... .... .. ...... .. ..... .. ... .4
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gJ

Dr
a. -(la)

-1 ax

so that

a, r~a r 1 a3  r ,(lb)

where a variable subscript will denote a partial derivative. Using the

Riemannian metric, the formula for the length element ds is given by

(ds) = g. dxdx ,
1)

where, because of the Euclidean nature of the space the metric coefficients

are given by

ar ar
gij -= a-'a = x -1- 3 (

ax ax~

The coefficients g.j = gji are the covariant components of the metric tensor.

The contravariant components g are related with g.J through the equation

i - k (2b)g gk Ok

where 63 (the Kronecker deltas) are the mixed components of the metric tensor.
k

Using (2b) we define the contravariant base vectors as

i ii
a = g a. (2c)

The quantities g and g defined as

g = det(g.j) , (3a)

g det(g'~ , (3b)

are related as

gg=1. (4)

For a three-dimensional space

g11 g 2 2g3 3 + 2g1 2 g 1 3g 2 3 - (g2 3)
2gll - (gg) 2 2 1) 2 33 )

~L~ffi(5)
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Introducing the quantities,

2
= g22g3 3 - (g2 3)

2
G2 = g11g33 - 13

2

G= g11g2 2 - (g1 2)

(6)

G4 = gl3g2 3 - g12g3 3

G5  g12g2 3 - g13g2 2

G6 = g12g1 3 -23 1

we have, on solving Eqs. (2b),

11 22 33
g = g , g =G 2 /g , g =G 3 /g , (7a)

12 13 23
g =G 4/g , g G5/g , g =G 6/g (7b)

The space Christoffel symbols of the first and second kind respectively

are given by

l~gi + !. ag..
[ijkI = --- :- + x

2 kk

ij = g [ij,k] . (8b)

Using (8b), we have

aa.
a .(8c)

ax j  2j _k

In the case of a two-dimensional surface embedded in a three-dimensional

space, we shall use the Greek indices a, $, etc. (with the exception of v)

with the stipulation that they assume only two values. Thus the surface

Christoffel symbols of the first and second kind are respectively given by

1. ga6 'g86 agas
[IC0,6] = 1 --- + - a- - (9a)

ax ax ax



T r g [aB 6], (9b)

where for the purpose of clarification we have used the symbol T (upsilon)

to denote the surface Christoffel symbols of the second kind in (9b) and

nct by r as in (8b).

In the process of formulation of a 3D coordinate generation problem, it

is helpTul to imagine the coordinates of a point in space as the intersection

of three distinct surfaces on each of which one coordinate is held fixed.
1 2 3

Using the convention of a right-handed coordinate system x , x , x or

6, r, , we introduce the notation as a surface on which the coordinate
V

x const., such that

2,3v = 1 implies that (x3 , ) are in the surface,

3 1v = 2 implies that (xI  x ) are in the surface,

1 2v =3 implies that (X, x )are in the surface.

Thus, the unit normal vector on the surface (V) is

n (r axr )/jrar l (10)

where

1
v= 1 a =2 ,=3 (surface x = =const.)

2
v= 2 a = 3 , B = 1 (surface x = const.) , (11)

3
v= 3: = , = 2 (surface x ==const.)

All other quantities and formulas which appear in the rest of the paper have
.12 13.been defined where they first appear. Refer also to Warsi and Eisenhart

§3. GENERATING DIFFERENTIAL EQUATIONS BASED ON GAUSS EQUATIONS

In this section our aim is to develop a method for t)'e generation of

3D coordinates wherein a series of surfaces are generated on each of which

two previously designated coordinates vary while the third coordinate remains

fixed. This method must also be structured in such a way that the variation
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of the third coordinate from one generated surface to the next is fully

reflected in the system of generating equations. With this aim, we start
from the equations of Gauss 13 ,14 which for a surface x = const., are given by .

=r 6 r +b Cv) (12)

where the variations of a, 8 and the range of 6 with v follows the scheme in

(11). The quantities b are the coefficients of the second fundamental

form of the surface. Since on the surface x = const., the vector n v is

orthogonal to the surface vectors r6 , hence

(v)
buI =n *r . (13)

To fix ideas, we envisage a surface which is formed of the coordinate lines

, r and on which ? = const. Dropping the index v, Eq. (12) yields the

three equations

6
= Tlr + Sn , (14a)

6
r Tl2 r6 + Tn (14b)

6
r T r + Un (14c)
-.nn 22-6

where the index 6 now varies from 1 to 2, and

S =b , T =b 12 ,U =b 22 . (15)

Here n is orthogonal to both r and rn, and the coefficients of the first

fundamental form of the surface are g11 ' g1 2 and g2 2 ; each evaluated at

- const. Obviously

2 22 2+2+2
g1 1 =x+y +z ,g 1 2 = y , g2 2  x+yi+z (16)

If Eqs. (14) are considered as the first order partial differential

equations in r and r, then we must also consider the Weingarten equations

Byn~ =-b 1  r (17a)
1 - - -y

Z p
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n= -b 2 gr (17b)

If now gill g12 ' g22 ' bill b1 2 ' b2 2 are arbitrarily prescribed then the set of

Eqs. (14) and (17), which represent fifteen scalar equations for the nine

scalars (r , r , n ), form an overdetermined system. Consequently one

has to impose the compatability requirements

(r ) = (rc )

for all values of a, 5, y from 1 to 2. This operation leads to the Mainardi-

Codazzi equations And the theorema egregium of Gauss which are higher order

equations and are not very suitable for the purpose of numerical solution.

We therefore return to the Gauss equations (14) and ask the question: Is

it possible to develop a method which centers around the Gauss equations and

is simple to implement numerically? The answer is in affirmative if we

manipulate Eqs. (14) as follows.

Multiplying Eq. (14a) by g2 2 ' Eq. (14b) by -2g1 2 and Eq. (14c) by g11

and adding the three equations, we get

r -[ + (A2 n)r] G3

+ (g2 25 - 2g 1 2 T + gllU)n , (18)

where £ is the second order differential operator,

£=g22a - 2g1 2 a% + g113 ,

and A2 is the second order differential operator of Beltrami. For any surface

x V const., (refer to the scheme in (11)),

A v) 1 1_(g 3  - g 3)
2 rG a 

--
V V

+ (g -gu  a)) (19a)

V

In particular for the surface = const. we drop the enclosed superscript and

write



8
A = 1

[ .{1 (g2 2a33)

33+ _ z_ (g.. _ )} (19b)
rl n/ z 12

6 ta
It is easy to show by using the definitions of that

1 1 1 1 a

2 = -(2g1 2 T1 2 - g2 2 T1 1 - g11 T2 2 ) , r(20a)

1 2 2 2
A2 n G (2g 12 T -12 g2 2 T11 - g1 1 T2 2 ) (20b)

3

The system of Eqs. (18) is still untamed and needs suitable constraints.

We must also somehow modify the terms S, T, U so as to bring the variation

of r with respect to r, as was noted in the opening paragraph of this section.

To achieve this objective we consider the Eqs. (8c) which for the surface

p

=const, are ,

1 2  3r r r + rn r + rz r , (21a)

1Irl . 22. 3r r r + r r + r (21b)

&q 12C 12'n 12r ,b

1 2 3 (21c)
rnn = r22-& 22.-n 22 '2

where all the derivatives with respect to & are assumed to have been evaluated

at ; const. Taking the dot product of Eqs. (21) with n and comparing with

Eqs. (13), we find that

bl S =xrl 3

b =T =Ar 2 , (22)

b =u -x
22 22

where

4
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=n-r =Xx + Yy + Zz4 (23)

X (y~z, - ynzl/ 3

Y =(xn z X Zn)/G--3 (241):nl 3

z= (xcy n - TnY&)/G 3.

Thus, by using the forms in (22) we have established a connection with the

coordinate C which changes from one surface to the next. We now rewrite

Eq. (18) as

r + r (A +)r (A2n)rn1G3 = nR , (25)

where

3 3 3
R Afg 11r2 2 - 2g12 12 + g22 r1 ) (26a)

Note that

R G (k k) (26b)
3 1 2

where k + k is twice the mean curvature of the surface.
1 2r

§3.1 Fundamental generating system of equations

We now impose the following differential constraints on the coordinates

and n:

A2C 0, (27a) -

a = 0 (27b)

and take them as the fundamental generating equations for the coordinates in

a surface. It must be noted that A is not a 2D Laplace operator except
2

when the surface degenerates into a plane having no dependence on z.

It is a well known result in differential geometry that the isothermic

coordinates in a surface satisfy Eqs. (27) identically. The isothermic

coordinates & and n are those orthogonal coordinates in a surface which yield

922 ' gl" The situation here is parallel to the choice of the Laplace
ig 2 2

equations V2 0, V = 0 for the generation of plane curvilinear coordinates,
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2
(e.g., the TTM method2), which are also satisfied identically by the

conformal coordinates in a plane. This does not mean that the Laplace

equations are suitable only for the generation of conformal coordinates.

In fact, as is evidenced by the available body of numerical results, the

Laplace equations are capable of generating very general coordinates in

arbitrary domains. Therefore, there looks to be no apparent reason why

Eqs. (27) should not form the basic generating system for general coordinates

in a surface. The analytical solutions given in this paper and the numerical

results given in Warsi and Ziebarth1 5 support this contention.

Having chosen Eqs. (27) as the generating system, the equation for the

determination of the Cartesian coordinates, viz., Eq. (25), becomes

r= nR . (28)

The three scalar equations in expanded form are

9 - 2g12xq + gX = XR, (29a)

22Y - 2g12Y c + gly n YR , (29b)

- =2g z + z ZR , (29c)g22z 2 &z + 11~q

where X, Y, Z, and R have been defined in Eqs. (24) and (26). It must be

noted that by cyclic permutations, equations similar to Eqs. (29) can be

written for the surfaces n = const. and 1 = const. However, only one set,

e.g., Eqs. (29), is sufficient provided that we are able to take care of the

derivatives r appearing in R.

The set of Eqs. (29) form a consistent set of equations for the deter-

mination of x, y, z under the prescribed boundary conditions.* For an

analytical understanding of these equations we open the differentiations of
3 3 3the metric coefficients in the formulae for ran, d12' r 22 Thus

r = ax + By + yz ,(30a)

3
r2 X +By & yz , (30b)

*Refer to comment (i) at the end of the paper.



3 CC + By + ( (30C)r22 rnn +Znn

where

af (G x + G x + G x)/g

(G5y& + G6Yn + G3yc)/g

y = (G5z4 + G6zT + G3z )/g

Substituting Eqs. (30) in (26) and after arranging the terms we can rewrite

Eqs. (29) as a quasilinear system,

A 2  0 i = 1, 2, 3 (31)

ax O ax 
'

where xi x, x 2  y, x3 i z and there is an implicit sum on j from i to 32 3ij
and on a, S from 1 to 2. The coefficients A1a depend on the metric coefficients

gill g12 ' g22 and on those geometric quantities which depend only on the first

partial derivatives. For example

11 11
A1i g2 -(-aAX) , AI2  -2gI2 (1-aAX) etc., etc.All 922 12 '1'2

Equations (31) are three equations in three unknowns with two independent
16

variables. Refer to Petrovsky for the classifications of such equations.

3.2 Coordinate redistribution (concentration)

Before discussing the basic solution algorithm for the set of Eqs. (29)

it is important to study the effect of a coordinate transformation which

produces a nonuniform distribution of coordinates. Again using indexed

quantities, let x be another coordinate system defined as

= (xl, x a = 1, 2

with

det(-) a 0
ax

Using xi to mean either x, y, or z, we have
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ax. ax ,

1 = i = 1, 2, 3 (32a)

axo a~y ax8

2 B2 ,

a . .x x aia .6 a' 8 ax i a (32b)Bxa~ 86 y a aBx 'R yxax 1 "

Also,

g a eoax ax (32c)

Now, Eqs. (29) can be written in a compact form as

a2x.
9 a 0x G3 - i  ( 33)

ax ax 3

where

X1 =, x 2 = Y , X3  r

and

11 12 22 -"
g = ,22/G3 g =-g12/G3  g l 11 . (34)

On coordinate transformation we have

G3 = /1 ) 2 , R = /(D) 2  = X. , (35)
3 3X1

where

1 2 1 2
* ax ax ax ax

1 2 2 1ai arc aR aR

Thus Eq. (33) becomes
2a x + p¥ aX. (36)

where Pa ax x G j
hO a; ax axo

-p P a ax
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Using equations similar to (34) in the new coordinate system, Eq. (36) yields

the equations

&x = Y , (38a)

hz = ZR, (38c)

', where

S; 2 
1 a + -- + Pz +7 a (39)

- - 1 - 1 - 1
= 22 - 2g1 2 P1 2 + gllP2 2 , (40a)

S- 2 - 2 - 2
S P - 2g12P12 + g1lP22 , (40b)

and X, Y, Z, and R have exactly the same expressions as in (24) and (26a)

in the new coordinate system.

The structure of the terms P is quite revealing particularly in thoseINo
situations when it is desired to redistribute an already existing coordinate

system x so as to achieve a desired concentration or expansion of the
-a -coordinates x . Though still a forcing function behavior for P has to'Jo

be prescribed, the user is at least aware of its structure, that is, it must

be composed of the product of two first partial derivatives and a second

partial derivative. These considerations may be important in the adaptive
Y !-coordinate systems. In other cases P may be prescribed arbitrarily. One

such case has been treated numerically in Ref. 15. (Refer also to 53.)

53.3 Morphology of A Solution Algorithm

The discussion that follows pertains to the case when it is desired to

generate the 3D curvilinear coordinates between two artibrary shaped smooth

surfaces. As is shown in Fig. 1, let the surface coordinates of the inner

body n - n B: and of the outer body n - n. be the same coordinates. Because

of the right-handedness of the coordinate triple ( the ordered pair

(i, ) is taken .as a positive ordered pair on both the surfaces. Since both

the surfaces n n nB and n are known either analytically or numerically,

so that
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_ .3

n = nB :r -rl,); n n. r - r. ( 41)

and hence the needed partial derivatives with respect to and 4 are directly

available at the surface

(. 4b"
Figure 1. Selection of coordinates on the inner and outer boundaries.

For the computation of r in the field one must first note that the
-C (2)coordinate C may not, in general, satisfy the Beltrami's equation A2 0.

Consequently, r must satisfy the equation

(2) + G (& (2) 4)r, G (k(2) + k2 (2)
2 2 ~) 2( + 2 n

From this equation we devise a weighted integral formula

r JIf(n)(r{{) + f 2 (n) (r ) ldc . (42a) P

where

2 (2) (2) (2) 133
(r)G2(1I12 2g 1 3  g3 3

(r=, i[- (k + k )n - r -
g11  1 2 g11  g

VG2 a 911 a 3, 4b
{-- - (-3 (4b

and 911 /G2/ -

fllnB) - 1 , fl(n ) = 0, f2()- 0, f2 (n)- . (42c)

Referring to Fig. 2(a), we now solve Eqs. (29) or (38) for each const.,

by prescribing-the values of x, y and z on the lower curve C1 and the upper

curve C2 which represent the curves on B and -respectively. In Fig. 2(b) C3
and C4 are the cut lines on which periodic boundary conditions are to be imposed. w
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(a) Wb

Figure 24(a) Topology of the given surfaces.. (b) Surface to be generated.

* §3.4 Exact solutions

The following two examples demonstrate that the proposed set of generating

equations (27) or equivalently the set of equations (29) or (38) are consistent

and provide nontrivial solutions.

Example 1:. Isothermic coordinates on a unit sphere.

Let the surface coordinates of a unit sphere be denoted as 4 where

* the order (r;,4) forms a right-handed system. Since our objective is to
* provide isothermic coordinates which are orthogonal, we assume

x - ( ,y - f (4)cos 4,z f f(;)sin C (43a) W

so that

f , (43b)

Calculating the metric coefficients and the surface Christoffel symbols
(2)based on the assumed form (43a), we find that the equations A 0 and

A n 0 are satisfied provided that

f2 02 +f2 (43c0

Exapl i Isthrmc corinte on a fnts'ee
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Eliminating * between (43b,c), we get

V2 2 2
= (1-f )f

which on integration yields

2e l____
e= e' (43d)l~~e l+e2

It can be verified that when the solution (43d) is used in (43a) then the

resulting metric coefficients g and g33 are equal. Thus the coordinates

E,C are isothermic. The relations between the standard spherical polar

coordinates e,O'and the coordinates CC are

e
=n tan

Refer also to §5.1.1.

Example 2: 3D coordinates between a prolate ellipsoid and a sphere.

We now conzider the case of coordinate generation between an inner body

n = nB which is a prolate ellipsoid and an outer body n = n. which is a

sphere. The coordinates which vary on these two surfaces are and t. A

curve C on the inner surface designated as r = 0 is
1 0

x =tcosh cB Cos 0 y =Tsinh nB sin 0 cos , z =rsinh nB sin 0 sin .

(44a)

Similarly the curve C2 corresponding to = on the outer surface is
2 0 0n. n" noo

x - e cos 0 # y , e sin 0 cos , z = e sin C sinE. (44b)
0 0

In order to provide the solution of the present problem with coordinate

contraction, we consider Eqs. (38) and assume

CM ,(() , n- n(n) + nr (45)

where -0 corresponds to F =0 and n = r corresponds to = nB" Thus

C(O) - 0, () - 0. Under the transformation (45), the only nonzero

components of Pi are P1 and P 2 . Writing

"11

we have 1 1 dA 2 1 dO (46)
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Based on the forms of the boundary conditions (44a) and (44b) we assume

the following forms for x, y, z for = 0

X = f(W)COSC0 ,y = sin rO cos , z = O(r)sin 0 sin E (47)

The boundary conditions for f and * are

f (S =tcosh B , f (n) e ( B =Bsinh B (.) =e (48)

Using the expressions in (47) we calculate the various partial derivatives,

metric coefficipnts, and all other data as needed for the Eqs. (38). On
2 2substitution we get an equation containing sin C0 and cos 0* Equating to

2 2
zero the coefficients of sin C0 and cos C we obtain

f + , (49)

e, r
- + (50)

where a prime denotes differentiation with respect to n. On direct integra-

tions of Eqs. (49) and (50) under the boundary conditions (48), we get

f(n) Ae(l + c

- Bn(n)(n) =De ,

where

A =t[(e -tcosh nB)sinh nB]/(e -rsinh n

B B Bl ~B =(n.- £ntsinh n)/n- ) ,

TI" n,,
C =C[e (cosh B - sinh nB)]/(e -Tsinh nB)

D -sinh nB

As an application, we take

&(Z) - aZ , n(n) - b(-nB)k

*,. Aq n ..o .h. ,xv.vn.t nf the ellipsoid.
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where a, b and I are constants. Thus

nc)=o'riB) n ( - nB  €; 7

B BB

By taking a value of k slightly greater than one = 1.05) we can have

sufficient contraction in the n-coordinate near the inner surface. For the

chosen problem since the dependence on 4 is simple, we find that the generated

coordinates between a prolate ellipsoid and a sphere are

x = [Ae B n ( n ) + Cjcos 4, y = De B n ( n ) sin 4 cos , z = De B r ( n ) sin 4 sin E

This example shows that the chosen generating system of equations (38)

are capable of providing non-isothermic coordinates between a prolate

ellipsoid and a sphere.

§4. GENERATING DIFFERENTIAL EQUATIONS BASED ON LAPLACE EQUATIONS

For the purpose of coordinate generation in either two or three dimensions

it has become quite popular, particularly after the publication of the TTM
2

method2 , to adopt a system of inhomogeneous Laplace' equations as the

generating system. The inhomogeneous terms are completely arbitrary and

seemingly there is no guidance from the analytical side as to how they

should be chosen. Because of this and due to other basic reasons it is

important to reconsider the formulation of the problem of coordinate

generation based on Laplace' system of equations from an analytical point

of view. The conclusions drawn from these considerations are that the set

of Laplace equations

2 iV x = 0 , i = 1, 2, 3 (51)

are essentially the basis of the TTM method rather than the set of inhomo-

geneous equations P

2 i ii 1-2 -3
V2 i - P (x , x ,31 i = 1, 2, 3 , (52)

where P are the specified functions. The reason for this conclusionoi -i
is that a coordinate transformation from x to any other system x , both

satisfying the same boundary conditions, automatically gives rise to the set

of equations (52) from (51). Thus as soon as the solution of the system of

equations (51) under the constraints of a body conforming boundary conditions
h: has been obtained a transformation L
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- i 1 2 3x = x (x x2  x

can redistribute these coordinates in any desired manner.

To formulate the above noted ideas analytically, we consider the formula
12,13

for the Laplacian of a scalar * in the curvilinear coordinate system,

which is

2 gi( 2r.. r (53)

ax ax ax

If * = xm is any curvilinear coordinate, then from (53) we obtain

2xm "" (4V j . (54)

If = Xm, where x is any of the rectangular Cartesian coordinate, x =x,m 2
x2 = y, X3 = z, then since V x = 0, we obtain using (53),

2

a 2 x ax
13 in 2 rg . + (Vx) m 0. (55)

ax axi axr

Taking (51) as the basic generating system, we get from (55),

2
xm

g _._ =0. (56)

ax'ax

Using the formulae stated in §2, we getDx = 0, or~m

Dx =o, (57)

A
Dy =0, (58)

Dz =0 , (59)

where the operator Dis given by

D- G a + G a + G3 +2G + 2Ga + 2Ga " (60)
1~ 2 n 3~ 4 CT, 5 & i

UI

t
• "
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In two dimensions* g33 = 1, 0, so that D becomes

D =  g22 - 2g12a + ga (61)

Let Ri be another coordinate system which satisfies the same body con-
i

forming boundary conditions as the system x , and let

i " 1I  2 3)
x (x , x ,x , i 1, 2, 3

with
_i

det ax) 0ax

Then an analysis similar to §3.2 shows that

3x ax -
a axm ax

-i jax ax ax

a 2x ax k 9. ax 29 Z
m  m ak aR m a R= +
x~x 8k £ 8Xi  kx xi~xaxiax D D ai ax ax DR ax ax

Using the last expression and the transformation law

ii
ij rn ax ax
g =g r nDR DRn

in Eq. (56) we get
2

_k m r k a
rk + Prn=0 (62)

where

P£ 8i xj 2R£

k ax axi a 2R
=rn - i (63)

and is symmetric in the lower two indices. If now in Eq. (55) we replace
i -i i ij

x by x, g by g and introduce

*Refer to comment (ii) at the end of the paper.
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v2-r _ranr

mn

r
.p.m

then it amounts to the same thing as taking the non-homogeneous Laplace
t

equations (52) as the generating system. Thus we reach the conclusion that

essentially Eqs. (51) are the basic generating equations and that any redis-

tribution of the solution of Eqs. (51) gives rise to Eqs. (62).

Transferring the second term of Eq. (62) to the right hand side and using

the formulae developed in §2 which are applicable to all coordinate systems,

we obtain
ax

Dx -(G P1  +G2 P2  + G P + 2GP + 2G P + 2G6 P (64)
m 1 3222 3 33 41 2 53 23 -9

where x = x, y, or z, and D is the same operator as (60) in the new coordinate
7,17

system. In two dimensions, Eq. (64) gives rise to the familiar forms

- 1 1 - 1 2 - 2 - 2

Dx= -(g2 2Pll - 2g12 P1 2 + gllP2 2)x - (g2 2 P1 1  2g1 2P 1 2 + gllP 22 )x

(65a)

1 - 1+ - 1 - 2 - 2 - 2
Dy -(g2 2Pl 2g1 2P1 2  g1 1 P22)Y- (g2 2Pll 2g1 2P12 + gllP 2 2)yi

(65b)

It must be noted that the preceding analysis guides one to a proper

selection of the quantities Pr for concentrating the coordinate lines in

the desired regions. This selection, though still arbitrary, at least

suggests that the chosen P should be something like a product of two first
rn

and one second partial derivatives. This idea is important in the adaptive

coordinate systems. Furthermore, the preceding analysis also exposes for the

first time the existence of the cross derivative quantities Prn n)

which do not appear if one starts from the Eqs. (52) and which may be important

in non-orthogonal coordinates. For example, in two dimensions the quantities

P are
rn

Pzz = ( ;)2E E + 2 ;n + (n 2-n
P~~T I 

InZ

11 +
11 (&Z) +2 zq n + (9z) 2"n

Refer to comment (iii) at the end of the paper.
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P2 + + (T),)2zn

P22 = 1 n ) +2 n n n n ,i
2 2- -2-

P R2 n + ((-)-4n-4 + (n-) n22 n n n n n .

P C~-4C + (4-n- + nzc-)44 r + n-n-&
12~~~ C f in

PI2 C n n + (4zn n + nZC n 1 -nn

If C = (Z) and n = n(n), then writing

=dC_ dn ?

we get,

S 1dX 2 1PI = 1d1 PII = 0 P 22 = 0 '

dZ

2 1 d 1 1 2
= = - l2 = 0,P22 6 d P 1 1

d17

which are exactly the same as have been used in an earlier paper.17 It, l:nis

case, writing for brevity

1 2
1 ' P2 2  Q

Eqs. (65) simply become

5x = -(q22 Px + g1 Qx-) , (66a)

Dy +g 1 Qy;) .(66b)

These equations do not contain the cross derivative terms PI21 P12 because

C and n have been chosen to be functions of 4 and n respectively.
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14.1 Case of orthogonal coordinates

In general, for the generation of orthogonal coordinates it is not

necessary that the coordinate functions should also satisfy the Laplace

equations in the xyz-space. In this section after summarizing the basic

generating equations for the orthogonal coordinates we have studied the

effect of constraining the coordinate functions to be simultaneously harmonic.

The orthogonality conditions are

gj = 0 for i g j (67)

Also, for orthogonal coordinates Eqs. (54) simply become

2 1 a 2h3q V2 = -g - (-s---),
?2rl= ac hlh"4

h h
2 r a-2 3 (68)
g 2

hlh 2

g 3

where

V2 3 + 3 + a , /9 h /-" h g hbhh= Vyy 1ZZ 2 2 2  3  933 23

Proceeding directly from Eq. (55) and using Eqs. (67) and (68) we obtain

.xm = 0 , m = , 2, 3, (69)

where

h 23 a ( 133 3 12 a
h~ 1a an h 2  ani 3C h 3 a

Note that the operator and the Laplacian operator 72 are related as

hh 2h 3 V2 
,

for a scalar *.
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Equations (69) are those fundamental equations which every orthogonal

coordinate system must satisfy. A program of calculation using Eqs. (67) and

(69) along with the definitions of gill g2 2 and g33 can be developed.

§4.1.1 Case of orthogonal coordinates using the Laplace equations

Case I: 3D coordinates.

If the generating system of equations is taken as

2 2 2,V = 0 ,V = 0 ,V = 0, (70)

then from Eqs. (68) we find that

hI  f f2(O f(rn) , h2 = 1lT1,)f, , h = f (r,)f ( , ) , (71)

where fl' f2 ' f3 are arbitrary functions of their arguments. Also the

generating system (69) for the Cartesian coordinates becomes

2 22
ax ax xmm

S ggg 2 2 2 - 0 , m = 1, 2, 3 (72)g22g33 a2 gllg33 an2 g1g2

which because of (71) can also be written as

2 2m 2 m 2 m

fl ' l) -2 + f 2R 1 0 +f 3 ( 'r) 2 0 , m = 1, 2, 3 (73)

an a

Case II: 2D coordinates.

For the case of 2D orthogonal coordinates the equations

2 2
V =0 , Vr =0 , (74)

with the use of Eqs. (68) yield

22= ag 1 '

where a is a constant. The case a = 1 gives the corresponding isothermic

coordinates which are conformal. However, by a straight forward coordinate

transformation of the isothermic coordinates &,n to another coordinates

&,n we can have a coordinate distribution in which g22 p gll" For, let

4= 4(4,n) , n = n(4,n)
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be an arbitrary orthogonal transformation. Using the chain rule of differ-

entiation, we get

-2 2r

etc., etc.,

which when used in Eqs. (74) along with the orthogonality condition

nx~ + ny~ = 0

and the formulae

vV a z -N 2 2 g 1 1 ,(75a)

g

2- 1 a-
V n = -g 11/g2 2  (75b)

)2 -2 22 1 - -+ + -- - ' €9 = g l 2
gll~1 22

yield the equations

g V% =-( 22/g11 + -a ), g = 0 . (76b)

at a
1 2 a (76b)

g V n - (nI-%' /g +)4 l/2
*at 22 11 anF

A study of Eqs. (76) suggests that if is only a function of , and

n is only a function of n, e.g.,

* = ( 1d Z n(n) = d F.ri

then Eqs. (76a,b)are identically satisfied by taking

9-1/9-2 p () v -n)(76c)

Thus

!U
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- 2-i 2-
91= (V () g(2 2 ' (76d)

and so the coordinates En are orthogonal but not conformal.

An important result from the preceding analysis is that if the orthogonal

coordinates are generated through the solution of the Laplace equations (74)

*. then there exists an infinity of transformations F = C(), n = r(n) in

which the ratio i_s a product of a function of C and a function of .

This result is not in general true for coordinates not satisfying the Laplace

equations.

§5. GENERATING DIFFERENTIAL EQUATIONS BASED ON THE RIEMANN TENSOR

In any given space there are endless possibilities for the introduction

of coordinate curves. Each chosen set of curves determines its own metric

components. For example, in a Cartesian plane besides introducing rectangular

Cartesian coordinates x, y, we also have endless possibilities for introducing

either orthogonal or nonorthogonal coordinate curves. However, as is well

known, there is a basic differential constraint on the variations of gIs

irrespective of the coordinate system. Since the curvature of an Euclidean

two-dimensional plane is identically zero, the basic differential constraint

on the g. 'S is
iJ

_a (G3 2 fa 3 2(G) -R-- r ) -- L(-r 0-o (77)3 R 2 12  ani g1  11 a g1  12

where C,n are any arbitrary coordinate curves in the plane. Thus no matter

which coordinate system is introduced in a plane, the corresponding matrics

g.. must satisfy Eq. (77). Equation (77) has also been used as the basic
1a18.

generating equation for the generation of orthogonal coordinates in a plane
12,13

In general, the Riemann curvature tensor R defined as,rjnp
22 2

R. 9~
3n grn gp

Rrjnp Jxn xr p  J xr xn
- 4 R jnp 2(ax ax n+ax raxp axjaxp ax raxn

+ g tS([jn,s] [rp,t] - [jp,s][rn,t]) (78)

defines the components of the curvature tensor of any general space. If the

-space is N-dimensional, then the number of components Rrjnp are given by

N N 2_
12 (N -1)
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Thus for N = 2 there is one distinct surviving component stated in Eq. (77).

However, for N 3, it has six distinct components

R1 2 12 ' R1 31 3 ' R2 3 2 3, R1213' R12 32 ' R1323

If the 3D-space is Euclidean, then its curvature is zero, so that the six

equations

R1212 0 0 R313 = 0 , R2323 = 0

(79)
R1213 = 0 , R1232 = 0 , R1323 = 0

determine the differential constraints for the six metric coefficients g.. in

any coordinate system introduced in an Euclidean space. These equations in

the expanded form are as follows:
2 2 2a1  g12  ag 2 2  2tS
91 2 2 a + 9 2g ([22,s][l,t] - [12,s][12,t]) = 01212 - an2 a&2 (80a)

2 2 2g1 1  ag 13  g 33  ts
R = 2 -2 + + 2g ([33,s][il,t] - [13,s][13,t]) 0
1313 aa2 a 2 (05)

R = -2 + g3+ 2gtS((33,s][22,t] - [23,s][23,t]) = 0,R2323 2 aa8 a 2 b)

2 2 22

g2 g1 2  ag 1 3  g2 3 ts

S- + + 2g (23,s] [,t] - [12,s][13,t] ,23aa a an 32 2

(80d)2 a2 2 2alg2 2  g 1 2  ag 2 3  g 1 3  ts
R12 13 = 3nD DCaC - + - + 2g ([223,s][13,t - [2,s][12,t]) = 0,

52an
(80e)

2 2 2 2

ag33 g13 ag 23  ag 12  t2 a13 a 9 + - + 2g tS([33,s][12,t] - [23,s][13,t]) = 0,R123 a 3- arnaD aCa a- 2

where (ij,k] are the Christoffel symbols of the first kind defined in (Ba).

Equations (80) are those consistent set of partial differential equations

* which must always be satisfied by the metric coefficients gij" In the 3D case

(80e

Eqs. (80 are six equations in six unknowns and, therefore, they form a closed
system of equations. In contrast, for the 2D case there is only one equation

(Eq. (77)) and three unknowns g1 1 ' g1 2 ' g2 2 and therefore some constraints

il 12 2
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are needed to turn Eq. (77) (such as orthogonality1 8) into a solvable

equation. This author is not aware of any numerical solution of the complete

set of equations (80), though there are some possibilities of developing

solution algorithms using Eqs. (80) as the core equations. For example,

in the problem of obtaining the 3D coordinates for the configuration of

Fig. 1, one can judiciously choose gill g1 3 ' and g33 based on the given bound-

ary data for the whole field and then solve Eqs. (80) for the remaining

coefficients g2 2 ' g2 3 ' and g1 2 " It should also be noted that in any physical

problem, e.g., the Navier-Stokes problem, one only needs the metric coeffi-

cients and their derivatives (Christoffel symbols), which become available

after solving Eqs. (80). Nevertheless, for graphical and other purposes,

one also needs the functions x(C,n,) etc.

To obtain the Cartesian coordinates on the basis of the available gi 's,
1J

we introduce the unit base vectors A. as
..i

A. a //g-, no sum on i. (81)

Let the components of A. along the rectangular Cartesian axes be denoted as

ui, vi, wi, so that

. = (ui, vi w. )

where

uI , vI  wI  ,1

u x 22 v /9.-"~ (82)
2 = 2/ ,2 2 yn/ , w 2  z 22'

n I

3 = x / , v3 = , W 3  3 3

Knowing ui, vi, wi, it is possible to evaluate the Cartesian coordinates W

through the line integrals

r [ ( X 1 /g-dj dl + V22d + 3r-- 33 (83)

The determination of ui, vi, wi is a separate problem which we now
consider. First of all using (81) in Eq. (8c), we get a system of first

order partial differential equations
U
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g~1 1 (!2 2) 2

axi - 1g.. 1) .2 g.. 1]
-~ 2.2x ] 3 "±aigii

+i Xgii (84)
gi 9 i J 2g ii xj

where, as before, there is no sum on the repeated index i. Equations (84)

form a system of 27 first order PDE'S in nine independent variables u.,1

vi, w.. This system of equations is overdetermined and thus its solvability

should depend on certain compatibility conditions. According to a theorem
19

on the overdetermined system of equations , if the compatibility conditions

hold then the solution of Eqs. (84) exists and is unique. The conditions

2 2a2A. a2.
a i ~im (85)

for all values of i, m, and j are the compatibility conditions. To prove (85)

we use Eq. (8c), which on cross differentiation yields

a2a. 2a. R. imja, (86)

axmaxj ax 
m

2. 12
where R is the Riemann-Christoffel curvature tensor and is related

with the Riemann's tensor Ri.. Evidently in our present case R.imj =,

since the space is Euclidean. Inserting (81) in (86) we find that Eq. (85)

are identically satisfied.

It is interesting to note that for a two-dimensional curvilinear coordinate

system there is no need to solve the system of equations such as (84). In

this case the single differential equation with G = g
3

R1212 an 9 1  3& g =

implies the existence of a single function a(E,n) such that

a J r2 -r r 2

9 1 =1 12

* .Consequently

U Cos a, v1 = -sin a, u cos(Q-O) , v2 = -sin(a-8)

2 ob-) v
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where a is the angle made by the tanget to the coordinate line n const. in

a clockwise sense with the x-axis, and

Cos e = /vlg2

is known.

§5.1 Case of orthogonal coordinates

We again return to the case of 3D orthogonal coordinates. Refer also to

§4.1. Under the constraint of orthogonality,

= g1 3 = 92 3  0 [12,3] = [13,21 123,1] = 0

(87)

.3 2 1 0O g ,
12 13 23 =g 1 1g 2 2g 3 3

the set of equations (80) reduce somewhat. They are

a 1 22  a I ag11  1 ag 11 ag 22.) + --a 0 (88a)

11 22 1 1 2 2  33/g1 1 22

a 1 933 a 1 1. 1 ag1 1 ag33
(gi33 -) + -(gl33 )gl. +22i _gll_ - g33-= 0 , (88b)

_a a 1 ag 33 ) a 1( z g2 2 . 1 ag2 2 ag3 3++ -an n 0, (88c)

a2g11  1 agl 1 ag11  1 ag 22 . 1 agll ag33 (8)

22

g/g g922'gl3 22lg33

a 21 1 ag2 2  1 2 +33 . 1 g2 322  (88e)

r a -a 2 (
9 2 2  

+-- 33 2g 1 1 g r 2

a 29 3 3  1 a9 3 3 11 ag 1 1  1 ag 3 3  1 ag2 2 ag3 3

- - (- -1- 22 a a) I (Bad)

nn g 933  an 2g a an

which are the Lame's equations.
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§5.1.1 The case of isothermic coordinates.

Isothermic coordinates* in a surface embedded in a 3D Euclidean space

are those coordinates in which the metric coefficients g and g3 3 in the sur-

face n = const. are equal. That is, the element of length ds on n = const. is

given by

gll~~ L~ 2 + ( ds 2)2
(d =const. 9 11 [(d + I

where , are chosen to be the surface coordinates. Setting

933= gill and g22 = F(n) J
in Eqs. (88), we obtain the basic equations for gll' which are

(g 11 a 1 11 1 , o (89a)

ac ~b g aca g 3 g a

(.) = 0 (89b)

11

ag 1

It can easily be verified that the only solution of Eqs. (89c,d) is

gl= [a+eP(n)]2f( 'd) , a ff const. (90)

Thus from (89b) (9)

t2

aP

g 1 [+(n)) a, cos (90)

Substituting (90) and (91) in Eq. (89a), the differential equation for

*Refer to the comment (iv) at the end of the paper.
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f(C,C) becomes

c + -f +2f . (92)

resg14

In Kreyszig we have the result that if in a portion of a surface

isothermic coordinates can be introduced then that portion of the surface can

conformally be mapped onto a plane. Thus in effect the solution of Eq. (92)

provides that mapping function which conformally maps a surface onto a plane.

As a verification of the above conclusion, we verify that the function

42
f 4e 2  2 (93)

(l+e

is a solution of Eq. (92). This function is related with the isothermic

coordinates on a sphere. Using the parametric equation of a sphere

x = [a+P(n)] cos 6, y = [a+P(r)]sin e sin q, z = [a+P(n)]sin 6 cos

and writing

4 , = Zn tan 2

where 0 < < 2P and 0 < e < 7, we obtain

4(a+P) 2e
2 C

g33  2 2(l+e

Thus the equations

(a+P) (l-e
2 )

l+e
2

2(a+P)e sinY 1= 2; (94)
U ~l+e 2~

2(a+P)e cosz =  
+e 2 4

represent a sphere of radius a+P(n) in terms of the isothermic coordinates

4 ,; in the surface. Since P(n) is an arbitrary function of n, we have the

capability of prescribing a suitable function P(n) to achieve any sort of

U
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contraction or expansion in the field. It looks that the representation (94)

should prove useful in the computational problems associated with a sphere.

Comment (i):

As a further justification for the consistency of the set of Eqs. (29) it

has been shown below that these equations can be combined to obtain the equation

for a surface z = z(x,y) in the well known form

- 2BZ + yz = 21*M , (i)
xx Yxy yy

where

2 2
2H k 2 = R/G3 ,M l+p +q ,p =z ,q zx y

= (l+q 2 )/ _ pq/ , Y = (l+p2)// 1 •

First note the following definitions and identities:
G = - 2 = -p l i4 -Y Z =

= l22 - , 1X 3M , Y M , Z =l / ,

A1(x,x) (I-X2)G3  A 1l(x,y) = -XYG3  3 (YY) (I-y2)G3

where (ii)

A1(a,b) = a22a b - gl2(ab + ab) + gllanbn

Calculating z , z , znn from z, z n , substituting these expressions in

Eq. (29c) while using the equations in (ii) and Eqs. (29a,b) we recover

Eq. (i) given above.

We now compare the equations obtained by Thomas
6 with those of Warsi

1 1

Thomas' equations in the present notation are

4 2
kx + 2pG 3H/v= 0 , ky + 2qG 3H/ = 0 , where G3 = (x y n-x y)2M , (ili)

which are exactly the same as Eqs. (29a,b) of this paper. It must, however,

be pointed out that the derivation of Eqs. (iii) involves fo-r steps:

(a) orthogonality of t with C,n, (b) vanishing of the principal curvature of

4-lines, (c) elimination of an arbitrary parameter (which may be zero),

(d) prescription of z(x,y) for e surface to be generated.

Ir
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Comment (ii):

In two dimensions another differential system is provided by a first order
20Beltrami equation , which in the complex form is

f- H(z,z)f z = 0 , (i)

where

f f(z,z)

z = x + iy , z = x - iy , i = ,-.

Writing

f(z,z) Kwoax,y) + in(x,y) ; H(z,z) = (x,y) + iv(x,y) (ii)

we obtain the following two real equations from (i) :

- x =  8 x +  YC y ,(i )

ny = CLx + ay ,iv)

where

(i 2 2]/ )2 2]/ (2 2[ + v 2 ]/A -2vA , =[(l+p) + V /A. A= i + v 2

Note that

2

a + y = 2(2-A)/A

A quasiconformal mapping becomes conformal when H = 0, or equivalently

= y = 1, 8 = 0. The resulting equations are then the Cauchy-Riemann

equations

x= f , y = nx

and then f(z) is an analytic function in the domain D.

Equations (iii) and (iv) can be inverted so that only the partial

derivatives of x and y appear. Thus

E".
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x ex y , (v)Tii

yn Yx -By (vi)

For Eqs. (v) and (vi) it is important to write a, , y in terms of the metric
7,12coefficients, which are

= 4 /[2 + (gn + g

a + Y= (gl + g 2 2 )/V g

+ [gn + g {(gn + g - 4(1 + B )gl']/2-g.

Comment (iii):
U

As is expected, Eq. (82) can be reduced to the form

2
a2x ax

-kk m 2-r m
g _k £ + -r

by using the formula

2a .... ax . . i ; q a r

ax1 ax I 3 axp  qr axi ax3

2
x
m

in the expression for . However, for gaining a new insight into the
ax axi

structure of the redistribution terms it looks profitable to keep the form

(62) with Prn defined in (63).

Comment (iv):

Generation of isothermic coordinates can also be achieved by the method
-I 2

detailed in Ref. 14. Let x and x be some sort of coordinates introduced

in a portion of the surface (for example from the subroutine developed by
21 1 2

Craidon ), and let x , x be the desired isothermic coordinates. Then

i i -I1 2
X = x ( x

Because of xi being isothermic, we have

g2 2 =11

U
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Using the transformation law for the covariant and the contravariant metric

tensor components we get

S= 'i~j  (i)

2 1
ax jk axi£ -gij k

where
jk 1 1 jk/E e k ,

e 1 1 =0 , e 2 2 = 0 ,e 1 2 =+ ,e 2 1 =-

From Eqs. (i) and (ii) we find the second order differential equations

a (/7ij xk) 0  , (iii)

DR
l i R3

where k = 1, 2. Note that in the Eqs. (i) - (iii) the indices range over the

values 1, 2.

Equations (iii) provide two linear uncoupled equations for the deter-

mination of the isothermic coordinates, since the values § of g are

known a' priori.

CONCLUSIONS

Three distinct methods of numerical coordinate generation based on PDE's

have been analyzed in detail. In the two newly proposed methods, viz., the

methods discussed in §§3 and 5, some useful results have been obtained by

looking at the generating system of equations as a system of forcing differ-

ential relations among the metric coefficients gij" For example, in the

method of §3 and g ij's are forced to satisfy Eqs. (27) (refer also to their

forms in Eqs. (20)). In the method of §5, the g ijs naturally satisfy Eqa. (80)

* since the space is intrinsically Euclidean. In the TTM method discussed in

§4 the generating Laplace or Poisson equations also amount to specifying a set

of differential constraints on the g is.
1)

In the process of obtaining the above noted results a number of other

* results and equations have been obtained which should be satisfied by all
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* . coordinate systems. For example, the orthogonal coordinates in an Euclidean

space must satisfy Eqs. (69), (88), and the nonorthogonal coordinates must

satisfy Eqs. (80), no matter which method is used to generate them. In

effect all these results provide enough material for proposing more efficient

calculation algorithms for the coordinate generation on a computer.
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NUMERICAL GENERATION OF THREE-DIMENlSIONIAL COORDINATES BETWEEN BODIES OF

-. ARBITRARY SHAPES

t,1t

Z. U. A. WARSI1 AND J. P. ZIEBARTHT

Department of Aerospace Engineering, Mississippi State University,
- Mississippi State, Mississippi 39762, USA

|.I W

INTRODUCTION

This paper is devoted to the numerical solution of a set of second order

elliptic partial differential equations for the generation of three-dimensional

curvilinear coordinates between two arbitrary shaped bodies. The central

idea of the method is to generate a series of surfaces between the given

inner and the outer boundary surfaces and then to connect these surfaces in

such a manner so as to have a sufficiently differentiable three-dimensional

coordinate net in the enclosed region.

The basic analytical foundation of the present method has already been

laid out by Warsi in 52 of Ref. 1. However, it is important to state here

that the proposed equations for the numerical solution form a consistent

set of second order elliptic equations which are a consequence of the

2equations of Gauss for a surface. Additional constraints are then imposed

which, besides yielding the simplest form of equations for numerical

purposes, also preserve the essential geometric properties of the generated

surfaces.

Formulation of the mathematical model

To fix ideas, let it be desired to generate the coordinates between the

two surfaces designated as n - nB (the inner surface) and n - n. (the outer
surface) respectively as is shown in Fig. 1 . The two coordinates which

vary in these two surfaces are then labeled as & or I and C or K. The
surfaces n = nB and ri - n are the known surfaces in which the Cartesian

coordinates r (x,y,z) are given as functions of 1 and r, that is,

r =r ,r r

are known either numerically or analytically. The method to be discussed

'Professor

tGraduate Research Assistant
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* generates a surface for each fixed value of C or K starting from a curve on

B and ending at the corresponding value of or K on the outer boundary

*surface. Refer to Fig. lb.r

surac K =const

Ai.1Referin toEq.(18 in ars , e nw iposetheresricion

1

fRefrrn cnto I Eq (1) nd (2)s we is ms the Betreiscdode

1 2 2 2

2 2 2
S= X~ + y + z (3a)

2
G 99- (g) (3d)3 g11g22  12

ag1  ag ag 1 ]*(a
T 1 2GIg22 --4l+ 91 2 ( 2 -2](a

Ia
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2 1 'g 22  -2

22 _ +g[ r g 1 . 2  a 12 )) (4b)22 a 2G 3 1n 12 - an

a gl 'g22. ag22.
712 = .. L (g2 2 a1 2  - - g12 - - (4c)

22 2G 92 2  an a1 a3

T 2, 1 [ (2 'g 1 2  11 4 g 1  , (4d)

-- 2 3 g n - ' '(4e)
12 2G3  11 a 2 a

3

. T~~~~12 G -g2--'(f

Based on the structure of the Christoffel symbols T in Eqs. (4) we conclude
OY

that the constraining equations (1) and (2) are essentially a set of differen-

tial constraints on the variations of the metric coefficients g . Thus

under the constraining equations (1) and (2), the three equations for the
generation of the Cartesian coordinates x, y, z can be obtained. Below
we write the equations when it is desired to have a concentration or expansion

.1in the coordinates C and n, (refer to Eqs. (38) in Warsi ). For brevity of

notation we use the same coordinates (C,n,0) either with or without
coordinate redistributions. The equations are

Lx = XR , (5a)

Ly = YR , (5b)

Z ZR, (5c)

where

a22 - 2g1 2a + g11a + Pa + Q3 n (6)

X -(y z - yz )/G-- (7a)n n 3

Y K (x:z : :/G- (7b)

Z a N -xnyO/'., (7c)
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3 3 3R= (Xx + Yy + Zz )(gl1r22 -2g12r12 + gr22rl , (8)

3 1 G gl g1 2  g 1  13 g 11

r G - + G (2 i + G 2 9- a)11 2g 5  a ac an 3 3& a

3 1 agfl ag22  agl 3  ag23  agl 2
r -G- + -G  , (9b)12 ig n 6a& 3 an a a

3 1 ag1 2  ag 2 2  ag2 2  392 3  ag 2 2F22 J G5 (2 G + G-(2 - a (9c)

G5 = g1292 3 - g13g2 2 , (10a)

G6 = g1291 3 - g11g2 3 , (lob)

g = g3 3G3 + g1 3G5 + g2 3G6 , (10c)

and G3 has already been defined earlier in (3d).

A successful program of calculations based on the set of Eqs. (5) - (10)

now rests on how effectively one can devise a calculation method for the first

partial derivatives r, = (xc, y , z ) in the field. In this connection we

first note that based on the prescribed values r (,4), r(C,) the partial

derivatives with respect to & and ; of any order can be evaluated on the

given bodies. Thus we must somehow connect the evaluation of r in the field

* with the partial derivatives in the surface. To maintain the intrinsic

geometrical properties of the C-lines in the field with the C-lines of the

inner and the outer boundaries, we consider the differential equations for
.1,3 .

the surfaces n - const. Following the method in Warsi we find that the

coordinates F, in any surface (including the given boundaries) must satisfy

the equations

r(~ 2 ) (2) (2) (2)
g 3 3 r 2g1 3 r + g + (G2 A2 2(k 1 +k )n 1()3 -& 13c Gllkl 2+2 C2 1 i

where the enclosed superscript (2) in Eq. (11) means that all the quantities

have been evaluated on the surface n - const. Also

2G- g11g3 3 ,(g13 (12a) -
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+k()(2) (2)
G2 (k 1 +k2 ) = g3 3

UJ(2 1 - 2g13T ( 2  + l $ 2  1b
139 g g11S ,(12b)

2 )  n(2r. (2) = (2). (2) = (2). 13)

(2 n r T n r ,S -n (3

and

(2) (2) (2) (2)
n -(X ,Y ,z

where

x (2) = (yz -yz )/G2 , (14a)

(2) (xz -xz
(2 (xz C 2 (14b)

It may be noted that (k +k2 )/2 is the mean curvature and S, T, U are the

coefficients of the second fundamental form of the surface r = const.

Based on Eq. (11), we now formulate the following weighted integral
r

formula for the evaluation of r in the field.

= fl(nl(r,)B + f 2 (n)(r)] d; , (isa)

where

S(2) (2) (2) 2 g1 3  33
(r , -=O - (k' +k' )n + -r - -g11  1 2 91 g.1.1

Ge(2 (15b)

9 2 *B'

and

(nB = 1 , f0 f2(nB 2 (15c)

The functions fI (n) and f2 (n) must satisfy the conditions (15c) and should

be chosen to reflect the effect of the coordinate redistribution function Q

appearing in Eq. (6). It is also to be noted that the coordinate 4 need not
(2)

in general satisfy the Beltrami equation. That is, in general A2 C 0
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Numerical solution of the equations

The numerical method used in this research for solving the system of

Eqs. (5) is the method of finite difference using the point-SOR. First the

coordinates E and C for both the inner surface (n = nB) and the outer surface

(ri u i) are to be generated using the available x, y, z values for these

surfaces either analytically or by a computer program developed by Craidon.4

In this research we have used both the analytical methods where possible,

and also the subroutine in Ref. 4 to generate the given body surface coordin-

ates, with equal success. Three practical problems have to be resolved before

an effective solution algorithm for Eqs. (5) can be developed. They are:

(i) a specification of the functions fl(n) and f2 (n) appearing in Eqs. (15),

(ii) specification of the redistribution functions (concentration or expansion

functions) P and Q, and (iii) a method to obtain the same coordinates on the

inner and outer boundaries. We now discuss each problem in succession.

(i) Before discussing the specifications of f1 (n) and f2 (n) we may state

that each value like n = iB and n = n. is a parameter to start with rather
than an integer. The difference n- B is the most important difference

and is known as the "modulus of the domain." The determination of n. - nB is

a formidable problem in three dimensions but fortunately there is no need F

for it in the case of numerical coordinate generation. Writing

(16a)n -nB

we find that the function f defined in (15c) should be a function of Z only,
1

so that

f(1) =1,f(0) 0, (16b)

and

f 2 ( i) = 1 - f ( ) " (16c) p

In the present computations we have taken f and f as linear functiorsof Z,

that is

P
f () - £. (17a)

Other simple possibilities which have been tried are

p



Though for convex surfaces the method of spherical projection seems to be

most desirable, we have for the present investigations, used the geometrical

method of first surrounding the inner body by a sphere of diameter equal

to the major length of the inner body. Next, each point (x,yB, zB) on the

inner body is projected to a point (x,y , zs ) on the sphere surrounding the

inner body. The correspondence between the inner and outer body is
then made by extending a straight line from the center through (x,y, z ) r

to a point (x, y., z.) on the outer sphere.

A number of program runs have been made for prolate ellipsoids of various

thicknesses surrounded by sphere of large radii. Also a thin body of

revolution with circular sections, resembling the fuselage of an airplane,

surrounded by a sphere has been considered. These numerical results with

and without coordinate concentration are shown in Figs. 2-7.

, I I I I i I .! i i I '. , i , I 4 i I e

I C

ii (a) (h)
[!~~~~~~~~~ t t ,1 1 1 ,ti

-1 0 +1 -1 0 +1

" Figure 2. Inner body a thick prolate ellipsoid with major axis 2 and
minor axis v3 surrounded by a sphere of radius 4. (a) Coordinate contours
for a section - const. (K = 11) for all (C,n) or (I,J) values,
(b) for a section = const. (I = 1) for all (n,C) or (J,K) values. In
both cases no contraction in r, K = 1.

o6
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+1 
.

y -1

-1 0+1 -1 0 +1

Figure 3. Cases (a) and (b) of Fig. 2, with contraction in ni, K =1.05.1

* +1 .
0,

oL

-1 0 +1 ,1 0 +1

Figure 4. Inner body a thin prolate ellipsoid with major axis 1.02,
minor axis 0.201 surrounded by a sphere of radius 1.5. (a) Coordinate
contours for a section const. (K -11) for all (&,n) or (I,J) values,
(b) for a section (=const. (I - 1) for all (r)or (J,K) values. In
both cases no contraction in n, K =1



10

+1.

1 +1-1 0 +1

Figure 5. Cases (a) and (b) of Fig. 4, with contraction in n, K 1.02.

+1

(I) z (h) 1
-1 0 +1 -1 0+1

Figure 6. Inner body a thin body of revolution with circular sections
having major axis 2 and minor axis 0.1313 surrounded by a sphere of radius
2.5. (a) Coordinate contours for a section =const. (K = 15) for all
(&~,n) or (I,J) values, (b) for a section & - const. (I -1) for all (ri,c)
or (J,K) values. In both cases no contraction in ni, K- 1.
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r

-K-iS z-01

(*) = (b)

• A € I i I I A I i I i I £

-1 0.1 -1 0 1 2I
Figure 7. Cases (a) and (b) of Fig. 6, with contraction in r, K = 1.005.

CONCLUSIONS

This paper has been devoted to the numerical solution of a set of elliptic p"

equations for the purpose of numerically evolving a series of surfaces

and the intersecting surfaces in arbitrary three-dimensional regions in

space. The most difficult part of such a program is the generation of

surfaces between any two given surfaces. This has been considered here

for thick and thin prolate ellipsoids and a body of revolution forming

the inner bodies and a sphere forming the outer boundary. Many successful

numerical algorithms can be developed using the proposed equations as

the core equations for providing the coordinates around a complete aircraft

and other aerodynamical shapes.
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